公務(wù)員考試數(shù)學(xué)運(yùn)算常見題型:排列組合
排列組合問題在國家公務(wù)員考試行測科目中屬于相當(dāng)重要的內(nèi)容,各地各次的考試中均能看到其身影。由于它聯(lián)系實(shí)際,生動有趣,題型多樣,思路靈活又獨(dú)特,因而不易掌握。適當(dāng)?shù)膶ε帕薪M合問題的解題策略進(jìn)行解法歸類,掌握一定的技巧,將有利于提高解題速度。在此江蘇公務(wù)員考試網(wǎng)專家給大家介紹幾類典型排列組合題的做題策略及解答方法。
一、基本概念
二、解題方法及技巧
解決排列組合問題有幾種相對比較特殊的方法:隔板法,特殊優(yōu)先法,間接計(jì)數(shù)法,捆綁法與插空法。以下逐個說明:
1、隔板法
例:10個名額分配到八個班,每班至少一個名額,問有多少種不同的分配方法?
分析:把10個名額看成十個元素,把這10個元素任意分成8份,并且每份至少有一個類似該種思維,實(shí)際上就是在這十個元素之間形成的九個空中,選出七個位置放置檔板,就可以很形象的達(dá)到目標(biāo)。
2、特殊優(yōu)先法
特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮。
例:六人站成一排,求
(1)甲不在排頭,乙不在排尾的排列數(shù);
(2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù)。
分析:
(1)先考慮排頭,排尾,但這兩個要求相互有影響,因而考慮分類。
第一類:乙在排頭,有A(5,5)種站法;
第二類:乙不在排頭,當(dāng)然他也不能在排尾,有44A(4,4)種站法;
共A(5,5)+44A(4,4)種站法。
(2)第一類:甲在排尾,乙在排頭,有A(4,4)種方法;
第二類:甲在排尾,乙不在排頭,有3P(4,4)種方法;
第三類:乙在排頭,甲不在排頭,有4P(4,4)種方法;
第四類:甲不在排尾,乙不在排頭,有P(3,3) A(4,4)種方法;
共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312種。
3、間接計(jì)數(shù)法
例:三行三列共九個點(diǎn),以這些點(diǎn)為頂點(diǎn)可組成多少個三角形?
分析:有些問題正面求解有一定困難,可以采用間接法。
比如說該題直接去求三角形的個數(shù)分類太多,比較復(fù)雜;換個方式思考,所求問題的方法數(shù)=任意三個點(diǎn)的組合數(shù)-三點(diǎn)共線的情況數(shù)。
4、捆綁法與插空法
例1:某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況?
分析:連續(xù)命中的三槍與單獨(dú)命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計(jì)數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即A(5,2)。
例2:馬路上有編號為l,2,3,……10 十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關(guān)掉,但不能同時關(guān)掉相鄰的兩只或三只,在兩端的燈也不能關(guān)掉的情況下,求滿足條件的關(guān)燈方法共有多少種?
分析:即關(guān)掉的燈不能相鄰,也不能在兩端。又因?yàn)闊襞c燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。
共C(3,6)=20種方法。
總的來說,排列組合問題雖然很難,但只要分清楚什么時候是分類什么時候是分步,并算清楚每一類或每一步的方法數(shù)(此時往往是用排列或者組合,注意是否與順序有關(guān)),如果是分類再把每一類的方法數(shù)加起來,如果是分步就把每一步的方法數(shù)撐起來。遵循這樣的解題思路,才能更準(zhǔn)確的解決排列組合這一較難的專題。
閱讀此文的人還閱讀了:
2015江蘇公務(wù)員考試行測數(shù)學(xué)運(yùn)算之工程問題解題妙趣
相關(guān)文章
一、基本概念

解決排列組合問題有幾種相對比較特殊的方法:隔板法,特殊優(yōu)先法,間接計(jì)數(shù)法,捆綁法與插空法。以下逐個說明:
1、隔板法
例:10個名額分配到八個班,每班至少一個名額,問有多少種不同的分配方法?
分析:把10個名額看成十個元素,把這10個元素任意分成8份,并且每份至少有一個類似該種思維,實(shí)際上就是在這十個元素之間形成的九個空中,選出七個位置放置檔板,就可以很形象的達(dá)到目標(biāo)。
2、特殊優(yōu)先法
特殊元素,優(yōu)先處理;特殊位置,優(yōu)先考慮。
例:六人站成一排,求
(1)甲不在排頭,乙不在排尾的排列數(shù);
(2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù)。
分析:
(1)先考慮排頭,排尾,但這兩個要求相互有影響,因而考慮分類。
第一類:乙在排頭,有A(5,5)種站法;
第二類:乙不在排頭,當(dāng)然他也不能在排尾,有44A(4,4)種站法;
共A(5,5)+44A(4,4)種站法。
(2)第一類:甲在排尾,乙在排頭,有A(4,4)種方法;
第二類:甲在排尾,乙不在排頭,有3P(4,4)種方法;
第三類:乙在排頭,甲不在排頭,有4P(4,4)種方法;
第四類:甲不在排尾,乙不在排頭,有P(3,3) A(4,4)種方法;
共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312種。
3、間接計(jì)數(shù)法
例:三行三列共九個點(diǎn),以這些點(diǎn)為頂點(diǎn)可組成多少個三角形?
分析:有些問題正面求解有一定困難,可以采用間接法。
比如說該題直接去求三角形的個數(shù)分類太多,比較復(fù)雜;換個方式思考,所求問題的方法數(shù)=任意三個點(diǎn)的組合數(shù)-三點(diǎn)共線的情況數(shù)。
4、捆綁法與插空法
例1:某人射擊8槍,命中4槍,恰好有三槍連續(xù)命中,有多少種不同的情況?
分析:連續(xù)命中的三槍與單獨(dú)命中的一槍不能相鄰,因而這是一個插空問題。另外沒有命中的之間沒有區(qū)別,不必計(jì)數(shù)。即在四發(fā)空槍之間形成的5個空中選出2個的排列,即A(5,2)。
例2:馬路上有編號為l,2,3,……10 十個路燈,為節(jié)約用電又看清路面,可以把其中的三只燈關(guān)掉,但不能同時關(guān)掉相鄰的兩只或三只,在兩端的燈也不能關(guān)掉的情況下,求滿足條件的關(guān)燈方法共有多少種?
分析:即關(guān)掉的燈不能相鄰,也不能在兩端。又因?yàn)闊襞c燈之間沒有區(qū)別,因而問題為在7盞亮著的燈形成的不包含兩端的6個空中選出3個空放置熄滅的燈。
共C(3,6)=20種方法。
總的來說,排列組合問題雖然很難,但只要分清楚什么時候是分類什么時候是分步,并算清楚每一類或每一步的方法數(shù)(此時往往是用排列或者組合,注意是否與順序有關(guān)),如果是分類再把每一類的方法數(shù)加起來,如果是分步就把每一步的方法數(shù)撐起來。遵循這樣的解題思路,才能更準(zhǔn)確的解決排列組合這一較難的專題。
閱讀此文的人還閱讀了:
2015江蘇公務(wù)員考試行測數(shù)學(xué)運(yùn)算之工程問題解題妙趣
