2015年江蘇公務員資料分析:差分法解題
資料分析“差分法”是公務員考試資料分析部分常用的十大運算技巧之一,是在比較兩個分數(shù)大小時,用“直除法”或者“化同法”等其他速算方式難以解決時可以采取的一種速算方式。江蘇公務員考試網(wǎng)(www.5yxx.com)介紹差分法適用形式、差分法基礎定義、差分法使用基本準則、差分法使用提示,并結(jié)合2015年江蘇公務員考試通用教材實例來說明差分法的運用方法與技巧。
差分法基礎定義
在滿足“適用形式”的兩個分數(shù)中,我們定義分子與分母都比較大的分數(shù)叫“大分數(shù)”,分子與分母都比較小的分數(shù)叫“小分數(shù)”,而這兩個分數(shù)的分子、分母分別做差得到的新的分數(shù)我們定義為“差分數(shù)”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數(shù)”,313/51.7就是“小分數(shù)”,而324-313/53.1-51.7=11/1.4就是“差分數(shù)”。
差分法適用形式
兩個分數(shù)作比較時,若其中一個分數(shù)的分子與分母都比另外一個分數(shù)的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經(jīng)常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。
差分法使用基本準則
“差分數(shù)”代替“大分數(shù)”與“小分數(shù)”作比較:
1、若差分數(shù)比小分數(shù)大,則大分數(shù)比小分數(shù)大;
2、若差分數(shù)比小分數(shù)小,則大分數(shù)比小分數(shù)小;
3、若差分數(shù)與小分數(shù)相等,則大分數(shù)與小分數(shù)相等。
比如上文中就是“11/1.4代替324/53.1與313/51.7作比較”,因為11/1.4>313/51.7(可以通過“直除法”或者“化同法”簡單得到),所以324/53.1>313/51.7。
差分法使用提示
一、“差分法”本身是一種“精算法”而非“估算法”,得出來的大小關系是精確的關系而非粗略的關系;
二、“差分法”與“化同法”經(jīng)常聯(lián)系在一起使用,“化同法緊接差分法”與“差分法緊接化同法”是資料分析速算當中經(jīng)常遇到的兩種情形。
三、“差分法”得到“差分數(shù)”與“小分數(shù)”做比較的時候,還經(jīng)常需要用到“直除法”。
四、如果兩個分數(shù)相隔非常近,我們甚至需要反復運用兩次“差分法”,這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。
差分法運用實例講解
【例1】比較7/4和9/5的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
大分數(shù) 小分數(shù)
9/5 7/4
9-7/5-1=2/1(差分數(shù))
根據(jù):差分數(shù)=2/1>7/4=小分數(shù)
因此:大分數(shù)=9/5>7/4=小分數(shù)
使用“差分法”的時候,牢記將“差分數(shù)”寫在“大分數(shù)”的一側(cè),因為它代替的是“大分數(shù)”,然后再跟“小分數(shù)”做比較。
【例2】比較32.3/101和32.6/103的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
小分數(shù) 大分數(shù)
32.3/101 32.6/103
32.6-32.3/103-101=0.3/2(差分數(shù))
根據(jù):差分數(shù)=0.3/2=30/200<32.3/101=小分數(shù)(此處運用了“化同法”)
因此:大分數(shù)=32.6/103<32.3/101=小分數(shù)
[注釋]本題比較差分數(shù)和小分數(shù)大小時,還可采用直除法。
【例3】比較29320.04/4126.37和29318.59/4125.16的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
29320.04/4126.37 29318.59/4125.16
1.45/1.21
根據(jù):很明顯,差分數(shù)=1.45/1.21<2<29318.59/4125.16=小分數(shù)
因此:大分數(shù)=29320.04/4126.37<29318.59/4125.16=小分數(shù)
[注釋]本題比較差分數(shù)和小分數(shù)大小時,還可以采用“直除法”(本質(zhì)上與插一個“2”是等價的)。
二、A、C兩城所在的省份2006年GDP量分別為:873.2/23.9%、1093.4/31.2%;同樣我們使用“差分法”進行比較:
873.2/23.9% 1093.4/31.2%
220.2/7.3%=660.6/21.9%
212.6/2%=2126/20%
上述過程我們運用了兩次“差分法”,很明顯:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;
因此2006年A城所在的省份GDP量更高。
【例4】比較32053.3×23487.1和32048.2×23489.1的大小
【解析】32053.3與32048.2很相近,23487.1與23489.1也很相近,因此使用估算法或者截位法進行比較的時候,誤差可能會比較大,因此我們可以考慮先變形,再使用“差分法”,即要比較32053.3×23487.1和32048.2×23489.1的大小,我們首先比較32053.3/23489.1和32048.2/23487.1的大小關系:
32053.3/23489.1 32048.2/23487.1
5.1/2
根據(jù):差分數(shù)=5.1/2>2>32048.2/23487.1=小分數(shù)
因此:大分數(shù)=32053.3/23489.1>32048.2/23487.1=小分數(shù)
變型:32053.3×23487.1>32048.2×23489.1
李委明提示:乘法型“差分法”
要比較a×b與a′×b′的大小,如果a與a'相差很小,并且b與b′相差也很小,這時候可以將乘法a×b與a′×b′的比較轉(zhuǎn)化為除法ab′與a′b的比較,這時候便可以運用“差分法”來解決我們類似的乘法型問題。我們在“化除為乘”的時候,遵循以下原則可以保證不等號方向的不變:
“化除為乘”原則:相乘即交叉。
閱讀此文的人還閱讀了
2015年江蘇公務員行測:資料分析之三大誤區(qū)
相關文章
差分法基礎定義
在滿足“適用形式”的兩個分數(shù)中,我們定義分子與分母都比較大的分數(shù)叫“大分數(shù)”,分子與分母都比較小的分數(shù)叫“小分數(shù)”,而這兩個分數(shù)的分子、分母分別做差得到的新的分數(shù)我們定義為“差分數(shù)”。例如:324/53.1與313/51.7比較大小,其中324/53.1就是“大分數(shù)”,313/51.7就是“小分數(shù)”,而324-313/53.1-51.7=11/1.4就是“差分數(shù)”。
差分法適用形式
兩個分數(shù)作比較時,若其中一個分數(shù)的分子與分母都比另外一個分數(shù)的分子與分母分別僅僅大一點,這時候使用“直除法”、“化同法”經(jīng)常很難比較出大小關系,而使用“差分法”卻可以很好地解決這樣的問題。
差分法使用基本準則
“差分數(shù)”代替“大分數(shù)”與“小分數(shù)”作比較:
1、若差分數(shù)比小分數(shù)大,則大分數(shù)比小分數(shù)大;
2、若差分數(shù)比小分數(shù)小,則大分數(shù)比小分數(shù)小;
3、若差分數(shù)與小分數(shù)相等,則大分數(shù)與小分數(shù)相等。
比如上文中就是“11/1.4代替324/53.1與313/51.7作比較”,因為11/1.4>313/51.7(可以通過“直除法”或者“化同法”簡單得到),所以324/53.1>313/51.7。
差分法使用提示
一、“差分法”本身是一種“精算法”而非“估算法”,得出來的大小關系是精確的關系而非粗略的關系;
二、“差分法”與“化同法”經(jīng)常聯(lián)系在一起使用,“化同法緊接差分法”與“差分法緊接化同法”是資料分析速算當中經(jīng)常遇到的兩種情形。
三、“差分法”得到“差分數(shù)”與“小分數(shù)”做比較的時候,還經(jīng)常需要用到“直除法”。
四、如果兩個分數(shù)相隔非常近,我們甚至需要反復運用兩次“差分法”,這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。
差分法運用實例講解
【例1】比較7/4和9/5的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
大分數(shù) 小分數(shù)
9/5 7/4
9-7/5-1=2/1(差分數(shù))
根據(jù):差分數(shù)=2/1>7/4=小分數(shù)
因此:大分數(shù)=9/5>7/4=小分數(shù)
使用“差分法”的時候,牢記將“差分數(shù)”寫在“大分數(shù)”的一側(cè),因為它代替的是“大分數(shù)”,然后再跟“小分數(shù)”做比較。
【例2】比較32.3/101和32.6/103的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
小分數(shù) 大分數(shù)
32.3/101 32.6/103
32.6-32.3/103-101=0.3/2(差分數(shù))
根據(jù):差分數(shù)=0.3/2=30/200<32.3/101=小分數(shù)(此處運用了“化同法”)
因此:大分數(shù)=32.6/103<32.3/101=小分數(shù)
[注釋]本題比較差分數(shù)和小分數(shù)大小時,還可采用直除法。
【例3】比較29320.04/4126.37和29318.59/4125.16的大小
【解析】運用“差分法”來比較這兩個分數(shù)的大小關系:
29320.04/4126.37 29318.59/4125.16
1.45/1.21
根據(jù):很明顯,差分數(shù)=1.45/1.21<2<29318.59/4125.16=小分數(shù)
因此:大分數(shù)=29320.04/4126.37<29318.59/4125.16=小分數(shù)
[注釋]本題比較差分數(shù)和小分數(shù)大小時,還可以采用“直除法”(本質(zhì)上與插一個“2”是等價的)。
二、A、C兩城所在的省份2006年GDP量分別為:873.2/23.9%、1093.4/31.2%;同樣我們使用“差分法”進行比較:
873.2/23.9% 1093.4/31.2%
220.2/7.3%=660.6/21.9%
212.6/2%=2126/20%
上述過程我們運用了兩次“差分法”,很明顯:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;
因此2006年A城所在的省份GDP量更高。
【例4】比較32053.3×23487.1和32048.2×23489.1的大小
【解析】32053.3與32048.2很相近,23487.1與23489.1也很相近,因此使用估算法或者截位法進行比較的時候,誤差可能會比較大,因此我們可以考慮先變形,再使用“差分法”,即要比較32053.3×23487.1和32048.2×23489.1的大小,我們首先比較32053.3/23489.1和32048.2/23487.1的大小關系:
32053.3/23489.1 32048.2/23487.1
5.1/2
根據(jù):差分數(shù)=5.1/2>2>32048.2/23487.1=小分數(shù)
因此:大分數(shù)=32053.3/23489.1>32048.2/23487.1=小分數(shù)
變型:32053.3×23487.1>32048.2×23489.1
李委明提示:乘法型“差分法”
要比較a×b與a′×b′的大小,如果a與a'相差很小,并且b與b′相差也很小,這時候可以將乘法a×b與a′×b′的比較轉(zhuǎn)化為除法ab′與a′b的比較,這時候便可以運用“差分法”來解決我們類似的乘法型問題。我們在“化除為乘”的時候,遵循以下原則可以保證不等號方向的不變:
“化除為乘”原則:相乘即交叉。
閱讀此文的人還閱讀了
2015年江蘇公務員行測:資料分析之三大誤區(qū)
