2011年江蘇公務員考試資料分析十大速算技巧2
2011年江蘇公務員考試已啟動,在考前沖刺階段如何提高復習的效率?本文針對行測資料分析模塊,總結了以下十大速算技巧。
【速算技巧三:截位法】
要點:
所謂"截位法",是指"在精度允許的范圍內,將計算過程當中的數字截位(即只看或者只取前幾位),從而得到精度足夠的計算結果"的速算方式。
在加法或者減法中使用"截位法"時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與借位),直到得到選項要求精度的答案為止。
在乘法或者除法中使用"截位法"時,為了使所得結果盡可能精確,需要注意截位近似的方向:
一、 擴大(或縮小)一個乘數因子,則需縮小(或擴大)另一個乘數因子;
二、 擴大(或縮小)被除數,則需擴大(或縮小)除數。
如果是求"兩個乘積的和或者差(即a×b±c×d)",應該注意:
三、 擴大(或縮小)加號的一側,則需縮小(或擴大)加號的另一側;
四、 擴大(或縮小)減號的一側,則需擴大(或縮小)減號的另一側。
到底采取哪個近似方向由相近程度和截位后計算難度決定。
一般說來,在乘法或者除法中使用"截位法"時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數據甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案并且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。
【速算技巧四:化同法】
要點:
所謂"化同法",是指"在比較兩個分數大小時,將這兩個分數的分子或分母化為相同
或相近,從而達到簡化計算"的速算方式。一般包括三個層次:
一、 將分子(或分母)化為完全相同,從而只需要再看分母(或分子)即可;
二、 將分子(或分母)化為相近之后,出現"某一個分數的分母較大而分子較小"或"某一個分數的分母較小而分子較大"的情況,則可直接判斷兩個分數的大小。
三、 將分子(或分母)化為非常接近之后,再利用其它速算技巧進行簡單判定。
事實上在資料分析試題當中,將分子(或分母)化為完全相同一般是不可能達到的,所以化同法更多的是"化為相近"而非"化為相同"。
相關文章
【速算技巧三:截位法】
要點:
所謂"截位法",是指"在精度允許的范圍內,將計算過程當中的數字截位(即只看或者只取前幾位),從而得到精度足夠的計算結果"的速算方式。
在加法或者減法中使用"截位法"時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與借位),直到得到選項要求精度的答案為止。
在乘法或者除法中使用"截位法"時,為了使所得結果盡可能精確,需要注意截位近似的方向:
一、 擴大(或縮小)一個乘數因子,則需縮小(或擴大)另一個乘數因子;
二、 擴大(或縮小)被除數,則需擴大(或縮小)除數。
如果是求"兩個乘積的和或者差(即a×b±c×d)",應該注意:
三、 擴大(或縮小)加號的一側,則需縮小(或擴大)加號的另一側;
四、 擴大(或縮小)減號的一側,則需擴大(或縮小)減號的另一側。
到底采取哪個近似方向由相近程度和截位后計算難度決定。
一般說來,在乘法或者除法中使用"截位法"時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數據甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案并且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。
【速算技巧四:化同法】
要點:
所謂"化同法",是指"在比較兩個分數大小時,將這兩個分數的分子或分母化為相同
或相近,從而達到簡化計算"的速算方式。一般包括三個層次:
一、 將分子(或分母)化為完全相同,從而只需要再看分母(或分子)即可;
二、 將分子(或分母)化為相近之后,出現"某一個分數的分母較大而分子較小"或"某一個分數的分母較小而分子較大"的情況,則可直接判斷兩個分數的大小。
三、 將分子(或分母)化為非常接近之后,再利用其它速算技巧進行簡單判定。
事實上在資料分析試題當中,將分子(或分母)化為完全相同一般是不可能達到的,所以化同法更多的是"化為相近"而非"化為相同"。
